| 广告联系 | 繁体版 | 手机版 | 微信 | 微博 | 搜索:
欢迎您 游客 | 登录 | 免费注册 | 忘记了密码 | 社交账号注册或登录

首页

温哥华资讯

温哥华地产

温哥华教育

温哥华财税

新移民/招聘

黄页/二手

旅游

人工智能专家获诺奖,是希望之光,还是灾难前奏?

QR Code
请用微信 扫一扫 扫描上面的二维码,然后点击页面右上角的 ... 图标,然后点击 发送给朋友分享到朋友圈,谢谢!
瑞典皇家科学院当地时间10月8日宣布,将2024年诺贝尔物理学奖授予约翰-霍普菲尔德(John J. Hopfield)和图灵奖得主、AI教父杰弗里-辛顿(Geoffrey E. Hinton),"以表彰他们利用人工神经网络进行机器学习的奠基性发现和发明"。


此消息一出,立即在网络上引发了热烈讨论。人们纷纷质疑,物理学诺奖颁给AI教父?机器学习算物理学?历届诺贝尔物理学奖得主恐怕都没有想到,自己或许有一天得和代表计算机领域最高荣誉的图灵奖“抢饭碗”。

就连获奖的辛顿都说:“我从来都没想过会被提名诺贝尔物理学奖,我怎么知道你们是不是在恶搞我?”


然而,不可否认的是,人工智能已经悄然改变着我们的生活方式。如今人工智能专家获得了诺贝尔物理学奖,是人类的希望之光,还是灾难的前奏?

对于人们的疑惑,颁发此奖的瑞典皇家科学院在发布的新闻稿中表示,今年的两位诺贝尔物理学奖得主利用物理学工具开发出的方法,为当今强大的机器学习奠定了基础。

DeepMind联合创始人、微软人工智能CEO穆斯塔法·苏莱曼指出,我们正在迎来一场新技术浪潮,人工智能、合成生物技术,以及更多伟大的技术创新,正如潮水一般席卷全球,为各行各业创造全新的业务模式和发展机会。

01

人工智能之春

人工智能是即将到来的技术浪潮的核心。


自 1955 年“人工智能”这个词首次提出以来,它很多时候更像是一个遥远的愿景。在将近半个世纪之后,突破性的时刻才终于到来。

2012 年,一个名为 AlexNet 的系统崭露头角。AlexNet 的成功源于一种旧技术的复兴,这种技术现已成为人工智能的基础,为人工智能领域注入了巨大活力。对我们在 DeepMind 的工作来说,它也是不可或缺的。那便是深度学习

深度学习使用的神经网络大致模仿了人类大脑的神经网络构造。简单来说,这些系统会在其网络被海量数据“训练”的过程中进行“学习”。


在 AlexNet 的案例中,它的训练数据主要由图像构成。图像中的每个红色、绿色或蓝色像素都会被赋予一个数值,由此生成的数组被输入神经网络。在神经网络内部,“神经元”通过一系列带有权重的连接与其他神经元相互关联,这些权重大致反映了信息输入之间的关联强度。神经网络的每一层都会将其接收的信息传递给下一层,从而创建出越来越抽象的表征形式。

然后,一种称为反向传播的技术介入,它负责调整网络连接的权重以优化神经网络。当系统发现错误时,这种调整会反向传播回网络,帮助网络在未来纠正相同的错误。通过不断重复这个过程并微调权重,神经网络的性能会逐渐提高。最终,它将从接收的单个像素开始学习,识别出线条、边缘和形状,最终理解场景中的整个物体。简言之,这就是深度学习。深度学习技术曾一度在人工智能领域受到嘲笑,但最终它攻克了计算机视觉的难题,在人工智能世界掀起了一场风暴。

AlexNet 由传奇研究员杰弗里·辛顿及其两名学生—多伦多大学的亚历克斯·克里哲夫斯基和伊利亚·萨特斯基弗共同开发。他们参加了由斯坦福大学李飞飞教授发起的ImageNet大规模视觉识别挑战赛,这项一年一度的竞赛旨在汇集业界力量,共同攻克一个目标:让计算机能够识别图像中的主要物体。每年,参赛团队都会拿出自己最好的模型,相互激烈竞争,通常每一年新模型的准确度提升较上一年都不超过 1 个百分点。

但在 2012年,AlexNet以10%的准确度提升打败了上一年的冠军。这听起来似乎只是一点儿小小的改进,但对人工智能研究人员来说,这已是跨越式的进步,足以区分那些玩具般的研究演示和那些即将对现实世界产生重大影响的突破性成果。那一年的比赛非常激动人心,辛顿和他的团队发表的论文也成了人工智能研究史上被引用次数最多的作品之一。

随着 AlexNet 这一重大突破的出现,人工智能突然成为学术、政府和企业领域的关键议题。杰弗里·辛顿和他的团队被谷歌招入麾下。美国中国的重要科技公司都将机器学习视为研发工作的核心。在成功开发 DQN 后不久,我们将 DeepMind 出售给了谷歌。这家科技巨头迅速在其全线产品中转向了“人工智能优先”的战略。

深度学习让计算机视觉技术无处不在,且运行顺畅。现在,该技术能通过相当于 21个全高清屏幕的视觉输入,即每秒约25亿像素的输入,对动态真实世界街景进行分类。这种精确度足以让 SUV汽车在繁忙的城市街道中自如穿梭。智能手机能识别各种物体和场景,在视频通话时,视觉系统可以自动模糊背景,突出人物。
您的点赞是对我们的鼓励     无评论不新闻,发表一下您的意见吧
上一页1234下一页
注:
  • 新闻来源于其它媒体,内容不代表本站立场!
  • 在此页阅读全文
    猜您喜欢:
    您可能也喜欢:
    我来说两句:
    评论:
    安全校验码:
    请在此处输入图片中的数字
    The Captcha image
    Terms & Conditions    Privacy Policy    Political ADs    Activities Agreement    Contact Us    Sitemap    

    加西网为北美中文网传媒集团旗下网站

    页面生成: 0.0311 秒 and 4 DB Queries in 0.0011 秒