| 廣告聯系 | 簡體版 | 手機版 | 微信 | 微博 | 搜索:
歡迎您 游客 | 登錄 | 免費注冊 | 忘記了密碼 | 社交賬號注冊或登錄

首頁

溫哥華資訊

溫哥華地產

溫哥華教育

溫哥華財稅

新移民/招聘

黃頁/二手

旅游

數學家找到第一個"無法穿過自身"的形狀


請用微信 掃一掃 掃描上面的二維碼,然後點擊頁面右上角的 ... 圖標,然後點擊 發送給朋友分享到朋友圈,謝謝!
從王子打賭到現代算法,數學家終於發現一種特殊多面體——Noperthedron,它無法通過任何方式讓自身穿過自身,打破了幾何學中延續三百年的猜想。


想象你手中有兩顆大小相同的骰子。如果在其中一顆上鑽一條直通的隧道,另一顆能順利穿過嗎?

“當然不可能吧?”大多數人都會這樣想。十七世紀末,一位身份不明的人和萊茵的Nopert王子打了這樣一個賭。Nopert是英王查理一世的侄子,曾指揮保皇黨軍隊,晚年在溫莎城堡裡研究金屬和玻璃。


他贏了賭局。數學家John Wallis在1693年記載了這件事——沒人知道Nopert是寫了證明,還是真的在方塊上鑽了洞。但Wallis自己證明了:如果沿立方體內部的一條對角線方向鑽洞,孔徑確實可以讓另一顆相同的立方體穿過。只要第二顆方塊大4%,就再也過不去了。

自那以後,人們開始好奇,還有哪些形狀也能“穿過自己”。Google工程師Tom Murphy說,這個問題“太經典了,連外星人都會重新發現它。”

數學家通常研究的是凸多面體——像立方體那樣表面平整、沒有凹陷的幾何體。如果某個形狀在某些方向上更寬,就容易找到一條直線通道,讓另一個相同的形狀穿過。但許多著名的多面體,如十二面體或截角二十面體(足球的形狀),對稱性太高,難以分析。

“幾百年來,我們只知道立方體具備這種特性,”奧地利統計局的數學家Jakob Steininger說。

直到1968年,數學家Christoph Scriba證明了四面體和八面體也擁有這種“Nopert性質”。此後十年,數學家和幾何愛好者不斷發現更多例子,包括十二面體、二十面體和足球體。Nopert性質似乎無處不在,甚至有人大膽猜測:所有凸多面體都能穿過自身。

沒人能反駁——直到今年。



把一個立方體的角倒過來,另一個立方體就可以通過。



2025年8月,Steininger與奧地利研究員Sergey Yurkevich發表論文,描述了一種擁有90個頂點、152個面的新形狀——他們命名為“Noperthedron”,名字由Murphy創造,意為“Nopert(Rupert)”的反面——“不行(nope)”。他們證明,無論怎樣鑽直線隧道,第二個Noperthedron都無法通過。

證明過程既依賴理論突破,也依靠龐大的計算。這個形狀的頂點分布極其微妙,Steininger感歎:“能成功簡直是奇跡。”

要理解立方體如何穿過自己,可以想象一只立方體的“影子”。如果立方體放平,影子是正方形;若將一個角朝上,影子則變成正六邊形。Wallis發現,正方形影子剛好能嵌入六邊形中,於是沿垂直方向鑽洞,另一顆立方體就能穿過。一個世紀後,Pieter Nieuwland找到更好的角度,使通道能容納比原立方體大6%的方塊。



此後所有研究都依賴這個思路:改變形狀方向,尋找能讓“影子”嵌入另一影子的角度。借助計算機,數學家們陸續在復雜多面體中找到了各種穿越路徑。某些幾乎緊到極限,比如“增三四面體”的通道僅比半徑大0.000002倍。

但計算也暴露了奇特的規律——對某個形狀,算法要麼很快找到通道,要麼永遠找不到。約翰斯·霍普金斯大學的Benjamin Grimmer說,他讓電腦連續運行兩周,嘗試讓一種由62個正多邊形組成的“菱方截二十面體”通過自身,結果毫無進展。


不過,找不到通道並不意味著它真的不行。畢竟方向無限多,電腦只能檢查有限數量。也許通道只是藏得更深。

Murphy開始生成上億種形狀:隨機的、多對稱的、頂點在球面上的,甚至刻意破壞已有通道的形狀。幾乎所有都能找到穿越路徑。這讓人們更確信,真正的“不行”形狀一定非常罕見。

Steininger和Yurkevich早在少年時期就是數學奧賽搭檔。雖然一個拿了碩士、一個拿了博士後都離開學術界,他們仍常聚在一起解謎。

“我們幾個小時前還在吃披薩,全程都在聊數學。”Steininger笑著說。

五年前,他們看到一個立方體穿過另一個的視頻,被深深吸引。他們寫了算法尋找穿越通道,逐漸確信某些形狀根本不具備Nopert性質。2021年,他們首次提出“菱方截二十面體”可能是反例。

要證明某形狀是Nopert,就必須排除所有可能的方向。數學上,每種方向都可轉化為一個“參數空間”中的點。若在某方向上影子超出邊界,就能排除那一點。有時偏差很大,就能排除一整片區域。Steininger和Yurkevich提出了“全局定理”,用來計算能排除的區域大小。


如果這些區域最終覆蓋整個空間,就能證明形狀確實無法穿過自身。但有時偏差太小,只能排除微小的片段。於是,他們又提出“局部定理”:若影子的三個頂點形成的三角形正好包住中心點,那麼任何輕微旋轉都會讓影子向外膨出,從而無法嵌入原影子。這意味著,在這種情況下,也不存在通道。

他們檢查了幾百種對稱的多面體,結果全都失敗——沒有哪種形狀的所有影子都滿足條件。於是,他們決定“造”一個。



經過不斷迭代,算法生成了Noperthedron:一個由150個三角形和兩個十五邊形組成的幾何體,形似一個胖胖的水晶花瓶,底部和頂部都很寬。有人甚至3D打印出模型當筆筒。

他們將所有可能的方向空間分成1800萬個小格子,對每個格子的中心點進行檢測,沒有一個能產生通道。接著又用局部定理和全局定理驗證每個格子都能被排除。既然整個空間都被覆蓋,證明完成——Noperthedron徹底沒有“穿越自身”的可能。

“長期以來的自然假設被推翻了,”Smith學院的Joseph O’Rourke評價道。





未來,數學家可能用這套方法找到更多“Nopert”形狀,或改進局部定理,驗證那些尚未確定的多面體。但現在,人們至少確定:幾何世界中,確實存在“絕不妥協”的形狀。

Murphy感歎,他與幾世紀前的Nopert王子似乎有種精神共鳴:“我喜歡他那種退休後還在城堡裡研究科學的浪漫。”

而Steininger與Yurkevich依舊沉浸在這種單純的喜悅裡。“我們只是喜歡解數學題,”Steininger說,“而且,我們還會一直這樣下去。”
您的點贊是對我們的鼓勵     還沒人說話啊,我想來說幾句
注:
  • 新聞來源於其它媒體,內容不代表本站立場!
  • 猜您喜歡:
    您可能也喜歡:
    我來說兩句:
    評論:
    安全校驗碼:
    請在此處輸入圖片中的數字
    The Captcha image
    Terms & Conditions    Privacy Policy    Political ADs    Activities Agreement    Contact Us    Sitemap    

    加西網為北美中文網傳媒集團旗下網站

    頁面生成: 0.0316 秒 and 5 DB Queries in 0.0012 秒